ENP100: Prosess og produksjon, Høst 2022

\emptyset ving 10 – 2022

Oppgave 1: Dynamic model

Figure 1 shows a tank of constant area, with liquid flowing in and out. The flow into the tank $q_i(t)$ is unpredictable, while the flow out $q_u(t)$ goes through a control valve with the following relation between differential pressure and flow:

$$\Delta p = \frac{1}{2} \rho \left(\frac{4 q_u}{\pi D^2}\right)^2 \cdot \zeta \tag{1}$$

Figur 2.2: Væsketank

Figure 1: Liquid tank [1]

a) Suppose that the coefficient of resistance for the valve is adjustable $(\zeta = \zeta(t))$. Show that that the differential equation for the liquid level h with respect to time can be written:

$$\frac{\mathrm{d}h(t)}{\mathrm{d}t} = \frac{q_i(t)}{A} - \frac{1}{A} K_v(t) \sqrt{h(t)} \tag{2}$$

- b) Identify which of the variables in equation 2 playing the roles of output y(t), disturbance v(t), and control signal u(t).
- c) Equation 2 can be discretisized, and solved with respect to future values of the the liquid level h:

$$h(t_i) = h(t_{i-1}) + \left(\frac{q_i(t_{i-1})}{A} - \frac{1}{A} K_v(t_{i-1}) \sqrt{h(t_{i-1})}\right) \cdot \Delta t$$
(3)

At $t_0 = 0$, the liquid level is 2 m. For a tank area $A = 1 \text{ m}^2$, zero inflow $(q_i = 0)$, and the coefficient K_v set to 0.25, what is the liquid level 1 second later $(\Delta t = 1 \text{ s})$?

UNIVERSITETET I STAVANGER

Institutt for Energi og petroleumsteknologi

ENP100: Prosess og produksjon, Høst 2022

Oppgave 2: Simulation

In an Excel worksheet, set up 3 columns; one for time (t), one for inflow $(q_i(t))$ and one for the liquid level (h(t)). Also supply cells containing the area, and a constant value for K_v , see Figure 2.

Use $\Delta t = 1$ s, and let the time run from 0 to 30 s. In the interval t = 7 - 20 s, give the inflow $q_i(t)$ the value 0.5 m³/s, otherwise it is zero.

Run a simulation to see how the level will vary with time;

- a) What is the maximum liquid level in the time period, and when does it occur?
- **b**) What happens if the time is extended to, say, 35 s ?

P-regulator; (optional):

Add two additional columns, one for the error, $e(t) = h_{SP} - h(t)$, and one for the control signal, $u(t) = K_p \cdot e(t)$. Also supply cells holding values for the controller gain K_p and the set point h_{SP} .

Then replace the constant value of K_v in equation 3 with the control signal u(t). This is the *feedback*, making the valve opening a function of the error. Use $K_v = 0.6$, and $h_{SP} = 1.5$ m.

- a) Will this strategy succeed in maintaining the level at a desired value of 1.5 m?
- b) If the set point is altered to a level higher than the initial value of 2 m (say, $h_{SP} = 3$ m) the control signal u(t) will attain negative values. What is the physical significance of this, and is it realistic ?

Literature

 Haugen, F.: Dynamiske systemer, modellering, analyse og simulering, 3. utgave, Fagbokforlaget, 2016, ISBN 978-82-519-2260-9 ENP100: Prosess og produksjon, Høst 2022

	Α	В	С	D	E	F	G	н	I.	J	К
1	Α	1	m2		t	qi(t)	h(t)				
2	Kv	0.25			0	0	2				
3					1	0	=G2 + (F3/	\$B\$1 - (\$B \$	\$ <mark>2/</mark> \$B\$1)*S	QRT(G2))*	(E3-E2)
4					2	0					
5					3	0					
6					4	0					
7					5	0					
8					6	0					
9					7	0.5					
10					8	0.5					
11					9	0.5					
12					10	0.5					
13					11	0.5					
14					12	0.5					
15					13	0.5					
16					14	0.5					
17					15	0.5					
18					16	0.5					
19					17	0.5					
20					18	0.5					
21					19	0.5					
22					20	0.5					
23					21	0					
24					22	0					
25					23	0					
26					24	0					
27					25	0					
28					26	0					
29					27	0					
30					28	0					
31					29	0					
32					30	0					
33											
24											

Figure	2:	Simulating	tank	level	in	Excel
		Sundana	COLLER	10.01	***	