Problem 1a

- i. Barium chloride (Bariumklorid)
- ii. Cobalt(III) phosphate (Kobalt(III)fosfat)
- iii. Cobalt(II) phosphate (Kobalt(II)fosfat)
- iv. Cesium hydroxide (Cesiumhydroksid)

Problem 1b

i. **Step 1.** Balance the H-atoms:

$$Sr(OH)_2 + 2HCI \rightarrow SrCl_2 + 2H_2O$$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

ii. **Step 1.** Balance the H-atoms:

$$C_{12}H_{22}O_{11} + O_2 \rightarrow CO_2 + 11H_2O$$

Step 2. Balance the C-atoms:

$$C_{12}H_{22}O_{11} + O_2 \rightarrow 12CO_2 + 11H_2O$$

Step 3. Balance the O-atoms:

$$C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

iii. **Step 1.** Balance the H-atoms:

$$C_4H_6 + 2H_2O \rightarrow C_4H_{10}O_2$$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

	$C_4H_6 + 2H_2O \rightarrow C_4H_{10}O_2$
C:	Left-hand side = Right-hand side = 4, ok
0:	Left-hand side = Right-hand side = 2, ok
H:	Left-hand side = Right-hand side = 10, ok

iv. **Step 1.** Balance the charge:

$$3Hg_2^{2+} + AI \rightarrow Hg + 2AI^{3+}$$

Step 2. Balance the Al-atoms:

$$3Hg_2^{2+} + 2AI \rightarrow Hg + 2AI^{3+}$$

Step 3. Balance the Hg-atoms:

$$3Hg_2^{2+} + 2AI \rightarrow 6Hg + 2AI^{3+}$$

Step 4. Count the atoms and charges in the reaction equation to make sure that each side has the same number of atoms of each element and the same charge:

	$3Hg_2^{2+} + 2AI \rightarrow 6Hg + 2AI^{3+}$
Hg:	Left-hand side = Right-hand side = 6, ok
Al:	Left-hand side = Right-hand side = 2, ok
Charge:	Left-hand side = Right-hand side = +6, ok

Problem 1c

iv.
$$\overset{\text{ON:}}{\text{SnH}_4}$$
 ? -1 (?) + 4(-1) = 0 gives ? = +4 $\overset{\text{Sn:}}{\text{H:}}$ -1

Problem 1d

	2C ₂ H ₂ (g)	+	5O ₂ (g)	\rightarrow	4CO ₂ (g)	+	2H₂O(g)
I (m):	2.00 g				0		-
I(n):	$n = \frac{m}{M} = \frac{2.00 \text{ g}}{26.04 \text{g/mol}} = 0.0768 \text{ mol}$		-		0		-
AR (n):	0		-		$n = \frac{4}{2} \times 0.0768 \text{ mol} = 0.154 \text{mol}$		-
AR (m):	0		-		m = nM = (0.154 mol)(44.01 g/mol) = 6.76 g		-

BR = before reaction, AR = after reaction

Problem 2a

HCl(g) +	NH₃(g)	\rightarrow	Cl ⁻ (g)	+	NH ₄ ⁺ (g)
Acid	Base		Conjugated base		Conjugated acid

Problem 2b

HCl reacts as an Brønsted acid because it gives away a proton, H^+ , to NH_3 , but not as an Arrhenius acid because it does not increase the concentration of hydronium ions, H_3O^+ , in water.

Problem 2c

Step 1.

Calculate 2.50 g Ba(OH)₂ into number of moles Ba(OH)₂:

$$n = \frac{m}{M} = \frac{2.50g}{171.34g/mol} = 0.01459 \text{ mol}$$

Step 2. Calculate the molar concentration of a 1.00 Ba(OH)₂(aq) solution, which contains $0.01459 \text{ mol of } 1.00 \text{ Ba(OH)}_2$:

$$c = \frac{n}{V} = \frac{0.01459 \text{ mol}}{1.00 \text{ L}} = 0.01459 \text{ M}$$

Step 3. Create a "before reaction (BR) – after reaction (AR) table" and include the molar concentration before and after reaction:

	Ba(OH)₂(aq)	\rightarrow	Ba ²⁺ (aq)	+	2OH ⁻ (aq)
BR(<i>c</i>):	0.01459 M		0		0
AR(<i>c</i>):	0		0.01459 M		0.02918 M

Step 4. Calculate the pOH of the solution:

$$pOH = -log[OH^{-}] = -log(0.02918) = 1.53$$

Step 5. Use the expression:

$$pH + pOH = 14.00$$

to calculate the pH of the solution:

$$pH + 1.53 = 14.00$$
 gives $pH = 12.47$

Problem 2d

Step 1. Use the pH-formula:

$$pH = -\log[H_3O^+]$$

to calculate the molar concentration of H_3O^+ ions in a $C_6H_5CO_2H(aq)$ solution of pH=3.00 from the formula:

$$3.00 = -log[H_3O^+]$$
 gives $[H_3O^+] = 10^{-3.00}M$

Step 2. Create an ICE-table for the dissociation of $C_6H_5CO_2H$ and include the molar concentrations of each species (the H_3O^+ and $C_6H_5CO_2^-$ ions have the same source, namely, $C_6H_5CO_2H$):

	C ₆ H ₅ CO ₂ H(aq)	+	H ₂ O(I)	=	C ₆ H ₅ CO ₂ -(aq)	+	H₃O⁺(aq)
Initial:	<i>c</i> M		-		0		0
Change:	-10 ^{-3.00} M				+10 ^{-3.00} M		+10 ^{-3.00} M
Equilibrium:	(c - 10 ^{-3.00}) M				10 ^{-3.00} M		10 ^{-3.00} M

Step 3. Insert the equilibrium molar concentrations into the expression of the acid constant, Ka, for C₆H₅CO₂H:

$$K_a = \frac{[C_6H_5CO_2^-][H_3O^+]}{[C_6H_5CO_2H]} = 6.3 \times 10^{-5}$$

to calculate the initial molar concentration, c, of $C_6H_5CO_2H$ in the $C_6H_5CO_2H$ (aq) solution:

$$\frac{(10^{-3.00}) \times (10^{-3.00})}{(c-10^{-3.00})} = 6.3 \times 10^{-5} \text{gives c} = 0.01687 \text{ M}$$

Step 4. Use the molarity formula:

$$c = \frac{n}{V}$$

to calculate the initial number of moles of C₆H₅CO₂H:

$$0.01687 \frac{\text{mol}}{\text{L}} = \frac{\text{n}}{10.0 \text{L}} \text{ gives n} = 0.1687 \text{ mol}$$

Step 4. Calculate the mass $C_6H_5CO_2H$ required to prepare 10.0 L of a $C_6H_5CO_2H$ (aq) solution of pH = 3.00:

$$m = nM = (0.1687 \text{mol}) \times (122.3 \text{g/mol}) = 20.6 \text{ g } C_6 H_5 CO_2 H_3 CO_2 H_$$

Problem 3a

Step 1. Insert real values into the density formula:

$$d = \frac{m_{solution}}{V_{solution}}$$

to calculate the mass for 1.00 L (1000 mL) of 20.0 mass% CH₃CH₂OH(aq) solution:

$$0.972$$
g/mL = $\frac{m_{\text{solution}}}{1000 \text{ L}}$ gives $m_{\text{solution}} = 972$ g

Step 2. Insert real values into the formula:

$$\text{Mass\% solute} = \frac{m_{solute}}{m_{solution}} \times 100\%$$

to calculate the mass CH₃CH₂OH in 1.00 L (972 g) of 20.0 mass% CH₃CH₂OH(aq) solution:

$$20.0\% = \frac{m_{\text{solute}}}{972 \text{ g}} \times 100\% \text{ gives } m_{\text{solute}} = 194.4 \text{ g}$$

Step 3. Convert 194.4 g of CH₃CH₂OH into number of moles:

$$n = \frac{m}{M} = \frac{194.4g}{46.07g/mol} = 4.22 \text{ mol}$$

Problem 3b

Step 1. Because the density of an 85-mass% HCO₂H (aq) solution is 1.22 g/mL, it follows that 1.00 mL (1.00×10^{-3} L) (= V_{solution}) solution has the mass of 1.22 g (= m_{solution}).

Step 2. Insert real values into the formula:

$$Mass\% \ solute = \frac{m_{solute}}{m_{solution}} \times 100\% = \frac{n_{solute} \times M_{solute}}{m_{solution}} \times 100\% = \frac{(c_{conc} \times V_{solution}) \times M_{solute}}{m_{solution}} \times 100\%$$

to calculate the molar concentration, c_{conc}, of a 85-mass% HCO₂H (aq) solution:

85.0% =
$$\frac{c_{\text{conc}} \times (1.00 \times 10^{-3} \text{L}) \times 46.03 \text{g/mol}}{1.22 \text{ g}} \times 100\% \text{ gives } c_{\text{conc}} = 22.5 \text{ M}$$

Step 3. Insert real values into the dilution formula:

$$c_{\mathrm{conc}} \times V_{\mathrm{conc}} = c_{\mathrm{dil}} \times V_{\mathrm{dil}}$$

to calculate the volume, V_{conc} , required of an 85%-mass% (22.5 = c_{conc}) HCO₂H(aq) solution to prepare 4.00 L (= V_{dii}) of a 3.00 M (= c_{dii}) HCO₂H(aq) solution:

$$(22.5 \text{ M}) \times V_{\text{conc}} = 3.00 \text{ M} \times (4.00 \text{ L}) \text{ gives } V_{\text{conc}} = 0.53 \text{ L}$$

That is, 0.530 L of 85-mass% $HCO_2H(aq)$ solution and of 3.47 L water is required to prepare 4.00 L of a 3.00 M $HCO_2H(aq)$ solution.

Problem 3c

Step 1. Rearrange the equation of the ideal gas law:

$$PV = nRT \Leftrightarrow \frac{n}{V} = \frac{P}{RT}$$

to calculate the molar concentrations for NO₂ and N₂O₄ at chemical equilibrium:

$$[NO_2] = \frac{n}{V} = \frac{P}{RT} = \frac{1.00 \text{ atm}}{(0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K})} = 0.034507 \text{ M}$$

$$[N_2O_4] = \frac{n}{V} = \frac{P}{RT} = \frac{5.30 \text{ atm}}{(0.08206L \times \text{atm/K} \times \text{mol}) \times (353.15K)} = 0.18289 \text{ M}$$

Step 1. Calculate the equilibrium constant:

$$K_c = \frac{[N_2O_4]}{[NO_2]^2} = \frac{0.18289}{(0.034507)^2} = 153$$

Problem 3d

Step 1. Rearrange the equation of the ideal gas law:

$$PV = nRT \Leftrightarrow \frac{n}{V} = \frac{P}{RT}$$

to calculate the initial molar concentrations of NO₂:

$$c_{\text{NO}_2} = \frac{\text{n}}{\text{V}} = \frac{\text{P}}{\text{RT}} = \frac{10.0 \text{ atm}}{(0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K})} = 0.34507 \text{ M}$$

Step 2. Create an ICE-table and include the molar concentrations for each species:

	2NO ₂ (g)	=	N ₂ O ₄ (g)
Initial:	0.34507 M		0.18289 M
Change:	-2x M		+x M
Equilibrium:	(0.34507 -2x) M		(0.18289 + x) M

Step 3. Insert the equilibrium molar concentrations into the expression for the equilibrium constant, K_c :

$$K_c = \frac{[N_2O_4]}{[NO_2]^2} = 153$$

to find x:

$$K_c = \frac{0.18289 + x}{(0.34507 - 2x)^2} = 153 \text{ gives } x = 0.155227 \text{ M}$$

Step 4. Calculate the mol concentrations for NO₂ and N₂O₄ at chemical equilibrium:

$$[NO_2] = (0.34507 - 2 \times 0.155227)M = 0.034616 \text{ mol/L}$$

$$[N_2O_4] = (0.18289 + 0.155227) M = 0.338117 mol/L$$

Step 5. Rearrange the equation for the ideal gas:

$$PV = nRT \Leftrightarrow P = \frac{n}{V} \times RT = [x] \times RT$$

to calculate the pressures for NO_2 and N_2O_4 at chemical equilibrium:

$$P_{\text{NO}_2} = (0.034616 \text{ mol/L}) \times (0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K}) = 1.00 \text{ atm}$$

$$P_{\text{N}_2O_4} = (0.338117 \text{ mol/L}) \times (0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K}) = 9.80 \text{ atm}$$

Problem 4a

5-bromo-3-ethyldodecane

5-bromo-3-ethyldodecane

Ε

2,6-dimethylheptane

2,6-dimethylheptane

Constitutional isomers:

2,6-dimethylheptane

2,5-dimethylheptane ₉H₂₀

Chemical Formula: C₈H₁₆

Chemical Formula:
$$C_9H_{20}$$

H
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H

Chemical Formula: C₈H₁₆

 $1, 2\hbox{-diethyl-1}, 2\hbox{-dimethylcyclohexane} \quad 1, 2\hbox{-diethyl-1}, 2\hbox{-dimethylcyclohexane}$

Problem 4b

(p)

(**c**)

7-methylnona-1,3,5-triene (7-metylnon-1,3,5-trie)

1-ethyl-2,3-dimethylcyclobutane (1-etyl-2,3-dimetylsyklobutan)

3-ethyl-1,1,2-trimethylcyclobutane (3-etyl-1,1,2-trimetylsyklobutan)

7-ethyl-3-methyldecane (7-etyl-3-metyldekan)

3-ethyl-8-methyldecane (3-etyl-8-metyldekan)

Problem 4c

Step 1. The half-reactions of the cell reaction:

$$2AI(s) + 3Ni^{2+}(aq) \rightarrow 2AI^{3+}(aq) + 3Ni(s)$$

are

Anode reaction: Al(s) \rightarrow Al³⁺(aq) + 3e⁻

Cathode-reaction: $Ni^{2+}(aq) + 3e \rightarrow Ni(s)$

Step 2. The cell-diagram is:

$$AI(s)|AI^{3+}(aq)||Ni^{2+}(aq)|Ni(s)$$

d.

