Problem 1a

- i. Barium chloride (Bariumklorid)
- ii. Cobalt(III) phosphate (Kobalt(III)fosfat)
- iii. Cobalt(II) phosphate (Kobalt(II)fosfat)
- iv. Cesium hydroxide (Cesiumhydroksid)

Problem 1b

i. **Step 1.** Balance the H-atoms:

 $Sr(OH)₂ + 2HCl \rightarrow SrCl₂ + 2H₂O$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

ii. **Step 1.** Balance the H-atoms:

 $C_{12}H_{22}O_{11} + O_2 \rightarrow CO_2 + 11H_2O$

Step 2. Balance the C-atoms:

 $C_{12}H_{22}O_{11} + O_2 \rightarrow 12CO_2 + 11H_2O$

Step 3. Balance the O-atoms:

 $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

iii. **Step 1.** Balance the H-atoms:

 $C_4H_6 + 2H_2O \rightarrow C_4H_{10}O_2$

Step 2. Count the atoms in the reaction equation to make sure that each side

has the same number of atoms of each element:

iv. **Step 1.** Balance the charge:

 $3Hg_2^{2+} + Al \rightarrow Hg + 2Al^{3+}$

Step 2. Balance the Al-atoms:

 $3Hg_2^{2+} + 2Al \rightarrow Hg + 2Al^{3+}$

Step 3. Balance the Hg-atoms:

 $3Hg_2^{2+}$ + 2Al \rightarrow 6Hg + 2Al³⁺

Step 4. Count the atoms and charges in the reaction equation to make sure

that each side has the same number of atoms of each element and the same

charge:

Problem 1c

i.
$$
C_{02}C_{3}
$$
 2(?) + 3(-2) = 0 gives ? = + 3
\nii. $C_{2}H_{3}C_{2}$ 2(?) + 3(+1) + 2(-2) = -1 gives ? = 0 $\frac{C:0}{H: +1}$
\niii. $C_{2}H_{3}C_{2}$ 2(?) + 3(+1) + 2(-2) = -1 gives ? = 0 $\frac{C:0}{H: +1}$
\niv. $C_{1}H_{3}C_{4}$ 2(-1) + 4(-2) = -1 gives ? = +6 $\frac{S: +6}{H: +1}$
\niv. $C_{1}C_{2}C_{3}$ 2(?) + 3(+1) + 2(-2) = -1 gives ? = +6 $\frac{S: +6}{H: +1}$
\n $\frac{S: +6}{C: -2}$
\niv. $C_{1}C_{1}C_{2}$ 2(?) + 4(-1) = 0 gives ? = +4 $\frac{S_{1}C_{1}}{S_{1}}C_{1}$

Problem 1d

BR = before reaction, AR = after reaction

Problem 2a

Problem 2b

HCl reacts as an Brønsted acid because it gives away a proton, H⁺, to NH₃, but not as an Arrhenius acid because it does not increase the concentration of hydronium ions, H_3O^+ , in water.

Problem 2c

Step 1.

Calculate 2.50 g Ba(OH)₂ into number of moles Ba(OH)₂:

$$
n = \frac{m}{M} = \frac{2.50g}{171.34g/mol} = 0.01459 \text{ mol}
$$

Step 2. Calculate the molar concentration of a 1.00 Ba(OH)₂(aq) solution, which contains 0.01459 mol of 1.00 Ba(OH)₂:

$$
c = \frac{n}{V} = \frac{0.01459 \text{ mol}}{1.00 \text{ L}} = 0.01459 \text{ M}
$$

Step 3. Create a "before reaction (BR) – after reaction (AR) table" and include the molar concentration before and after reaction:

Step 4. Calculate the pOH of the solution:

 $pOH = -log[OH^{-}] = -log(0.02918) = 1.53$

Step 5. Use the expression:

$$
pH + pOH = 14.00
$$

to calculate the pH of the solution:

$$
pH + 1.53 = 14.00
$$
 gives $pH = 12.47$

Problem 2d

Step 1. Use the pH-formula:

$$
pH = -\log[H_3O^+]
$$

to calculate the molar concentration of H_3O^+ ions in a $C_6H_5CO_2H(aq)$ solution of pH = 3.00 from the formula:

$$
3.00 = -\log[\text{H}_3\text{O}^+] \text{ gives } [\text{H}_3\text{O}^+] = 10^{-3.00} \text{M}
$$

Step 2. Create an ICE-table for the dissociation of $C_6H_5CO_2H$ and include the molar concentrations of each species (the H_3O^+ and $C_6H_5CO_2^-$ ions have the same source, namely, $C_6H_5CO_2H$:

	$C_6H_5CO_2H(aq)$	$H_2O(1)$	\rightleftharpoons	$C_6H_5CO_2$ (ag)	$H3O+(aq)$
Initial:	c M	$\overline{}$			
Change:	$-10^{-3.00}$ M			$+10^{-3.00}$ M	$+10^{-3.00}$ M
Equilibrium:	$(c - 10^{-3.00})$ M			$10^{-3.00}$ M	$10^{-3.00}$ M

Step 3. Insert the equilibrium molar concentrations into the expression of the acid constant, Ka, for C₆H₅CO₂H:

$$
K_{a} = \frac{[C_{6}H_{5}CO_{2}^{-}][H_{3}O^{+}]}{[C_{6}H_{5}CO_{2}H]} = 6.3 \times 10^{-5}
$$

to calculate the initial molar concentration, c , of $C_6H_5CO_2H$ in the $C_6H_5CO_2H(aq)$ solution:

$$
\frac{(10^{-3.00}) \times (10^{-3.00})}{(c - 10^{-3.00})} = 6.3 \times 10^{-5}
$$
 gives c = 0.01687 M

Step 4. Use the molarity formula:

$$
c=\frac{\mathrm{n}}{\mathrm{V}}
$$

to calculate the initial number of moles of $C_6H_5CO_2H$:

$$
0.01687 \frac{\text{mol}}{\text{L}} = \frac{\text{n}}{10.0 \text{L}} \text{ gives } \text{n} = 0.1687 \text{ mol}
$$

Step 4. Calculate the mass C₆H₅CO₂H required to prepare 10.0 L of a C₆H₅CO₂H(aq) solution of pH = 3.00:

$$
m = nM = (0.1687 \text{mol}) \times (122.3 \text{g/mol}) = 20.6 \text{g C}_6 \text{H}_5 \text{CO}_2 \text{H}
$$

Problem 3a

Step 1. Insert real values into the density formula:

$$
d = \frac{m_{\text{solution}}}{V_{\text{solution}}}
$$

to calculate the mass for 1.00 L (1000 mL) of 20.0 mass% $CH₃CH₂OH(aq)$ solution:

$$
0.972g/mL = \frac{m_{\text{solution}}}{1000 \text{ L}}
$$
 gives $m_{\text{solution}} = 972 \text{ g}$

Step 2. Insert real values into the formula:

Mass% solute =
$$
\frac{m_{\text{solute}}}{m_{\text{solution}}} \times 100\%
$$

to calculate the mass CH_3CH_2OH in 1.00 L (972 g) of 20.0 mass% $CH_3CH_2OH(aq)$ solution:

$$
20.0\% = \frac{\text{m}_{\text{solute}}}{972 \text{ g}} \times 100\% \text{ gives } \text{m}_{\text{solute}} = 194.4 \text{ g}
$$

Step 3. Convert 194.4 g of CH₃CH₂OH into number of moles:

$$
n = \frac{m}{M} = \frac{194.4g}{46.07g/mol} = 4.22 \text{ mol}
$$

Problem 3b

Step 1. Because the density of an 85-mass% HCO₂H (aq) solution is 1.22 g/mL, it follows that 1.00 mL $(1.00 \times 10^{-3} L)$ (= V_{solution}) solution has the mass of 1.22 g (= m_{solution}).

Step 2. Insert real values into the formula:

$$
\text{Mass\%} \text{ solute} = \frac{\text{m} \text{solute}}{\text{m} \text{solution}} \times 100\% = \frac{\text{n} \text{solute} \times \text{M} \text{solute}}{\text{m} \text{solution}} \times 100\% = \frac{(\text{conc} \times \text{V} \text{solution}) \times \text{M} \text{solute}}{\text{m} \text{solution}} \times 100\%
$$

to calculate the molar concentration, c_{conc} , of a 85-mass% HCO₂H (aq) solution:

$$
85.0\% = \frac{c_{\text{conc}} \times (1.00 \times 10^{-3} \text{L}) \times 46.03 \text{g/mol}}{1.22 \text{ g}} \times 100\% \text{ gives } c_{\text{conc}} = 22.5 \text{ M}
$$

Step 3. Insert real values into the dilution formula:

$$
c_{\rm conc} \times V_{\rm conc} = c_{\rm dil} \times V_{\rm dil}
$$

to calculate the volume, V_{conc} , required of an 85%-mass% (22.5 = c_{conc}) HCO₂H(aq) solution to prepare 4.00 L (= V_{di}) of a 3.00 M (= c_{di}) HCO₂H(aq) solution:

$$
(22.5 \text{ M}) \times V_{\text{conc}} = 3.00 \text{ M} \times (4.00 \text{ L}) \text{ gives } V_{\text{conc}} = 0.53 \text{ L}
$$

That is, 0.530 L of 85-mass% HCO2H(aq) solution and of 3.47 L water is required to prepare 4.00 L of a 3.00 M $HCO₂H(aq)$ solution.

Problem 3c

Step 1. Rearrange the equation of the ideal gas law:

$$
PV = nRT \Leftrightarrow \frac{n}{V} = \frac{P}{RT}
$$

to calculate the molar concentrations for $NO₂$ and $N₂O₄$ at chemical equilibrium:

$$
[NO_2] = \frac{n}{V} = \frac{P}{RT} = \frac{1.00 \text{ atm}}{(0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K})} = 0.034507 \text{ M}
$$

$$
[N_2O_4] = \frac{n}{V} = \frac{P}{RT} = \frac{5.30 \text{ atm}}{(0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K})} = 0.18289 \text{ M}
$$

Step 1. Calculate the equilibrium constant:

$$
K_c = \frac{[N_2O_4]}{[NO_2]^2} = \frac{0.18289}{(0.034507)^2} = 153
$$

Problem 3d

Step 1. Rearrange the equation of the ideal gas law:

$$
PV = nRT \Leftrightarrow \frac{n}{V} = \frac{P}{RT}
$$

to calculate the initial molar concentrations of $NO₂$:

$$
c_{\text{NO}_2} = \frac{n}{V} = \frac{P}{RT} = \frac{10.0 \text{ atm}}{(0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K})} = 0.34507 \text{ M}
$$

Step 2. Create an ICE-table and include the molar concentrations for each species:

	2NO ₂ (g)	\rightleftharpoons	$N_2O_4(g)$
Initial:	0.34507 M		0.18289 M
Change:	-2x M		+x M
Equilibrium:	$(0.34507 - 2x)$ M		$(0.18289 + x)$ M

Step 3. Insert the equilibrium molar concentrations into the expression for the equilibrium constant, K_c:

$$
K_c = \frac{[N_2 O_4]}{[NO_2]^2} = 153
$$

to find x:

$$
K_c = \frac{0.18289 + x}{(0.34507 - 2x)^2} = 153
$$
 gives x = 0.155227 M

Step 4. Calculate the mol concentrations for NO₂ and N₂O₄ at chemical equilibrium:

$$
[NO2] = (0.34507 - 2 \times 0.155227)M = 0.034616 \text{ mol/L}
$$

$$
[N2O4] = (0.18289 + 0.155227)M = 0.338117 \text{ mol/L}
$$

Step 5. Rearrange the equation for the ideal gas:

$$
PV = nRT \Leftrightarrow P = \frac{n}{V} \times RT = [x] \times RT
$$

to calculate the pressures for $NO₂$ and $N₂O₄$ at chemical equilibrium:

 $P_{NO_2} = (0.034616 \text{ mol/L}) \times (0.08206L \times \text{atm/K} \times \text{mol}) \times (353.15K) = 1.00 \text{ atm}$ $P_{\text{N}_2O_4} = (0.338117 \text{ mol/L}) \times (0.08206 \text{L} \times \text{atm/K} \times \text{mol}) \times (353.15 \text{K}) = 9.80 \text{ atm}$

1,2-diethyl-1,2-dimethylcyclohexane 1,2-diethyl-1,2-dimethylcyclohexane

Problem 4b

$$
(a) \qquad \qquad (b) \qquad \qquad (b)
$$

c)

7-methylnona-1,3,5-triene (7-metylnon-1,3,5-trie)

1-ethyl-2,3-dimethylcyclobutane (1-etyl-2,3-dimetylsyklobutan)

3-ethyl-1,1,2-trimethylcyclobutane (3-etyl-1,1,2-trimetylsyklobutan)

7-ethyl-3-methyldecane (7-etyl-3-metyldekan)

3-ethyl-8-methyldecane (3-etyl-8-metyldekan)

Problem 4c

Step 1. The half-reactions of the cell reaction:

$$
2Al(s) + 3Ni^{2+}(aq) \rightarrow 2Al^{3+}(aq) + 3Ni(s)
$$

e)

are

Anode reaction: $AI(s) \rightarrow Al^{3+}(aq) + 3e^{-}$

Cathode-reaction: $Ni^{2+}(aq) + 3e^- \rightarrow Ni(s)$

Step 2. The cell-diagram is:

Al(s) | $Al^{3+}(aq)$ | | $Ni^{2+}(aq)$ | Ni(s)

d.

