Kurs ENP100: Prosess og produksjon, Høst 2022

\emptyset VING 2 – 2022

Oppgave 1: Singe-phase flow

Single-phase oil is produced from a reservior at 1500 ft depth, against a wellhead pressure of 500 psi a.

Calculate the bottom-hole pressure

The following data are given:

Oil production rate:	q_o	= 1000	stb/day
Oil specific gravity:	G	= 16	°API
Oil viscosity:	μ_o	= 5	cР
Tubing inner diameter:	D_i	= 2.259	in
Tubing wall relative roughness:	ε	= 0.001	
Well inclination:	α	$= 3^{\circ}$	(From vertical)

Oppgave 2: Multi-phase flow

For multiphase wells the following flow ratios are defined:

$$GLR = \frac{Q_g}{\dot{q}_o + \dot{q}_w} \quad (Gas-liquid ratio)$$

$$GOR = \frac{Q_g}{\dot{q}_o} \quad (Gas-oil ratio)$$

$$WC = \frac{\dot{q}_w}{\dot{q}_o + \dot{q}_w} \quad (Water cut)$$

$$WOR = \frac{q_w}{\dot{q}_o} \quad (Water-oil ratio)$$

GLR and WC are often stated as measured data, while the correllations require GOR and WOR as input.

a) Show that

$$WOR = \frac{WC}{1 - WC}$$
$$GOR = \frac{GLR}{1 - WC}$$

The following data for a three-phase well are taken from Problem 4.2 in the text book [1]:

p_{wh}	= 300	psi a
T_{wh}	= 100	°F
D	= 1.66	in
Δh	= 8000	ft
T_{wh}	= 170	°F
\dot{q}_L	= 2000	$\mathrm{stb}/\mathrm{day}$
WC	= 30	%
GLR	= 800	$\mathrm{scf/stb}$
G_o	= 40	°API
γ_w	= 1.05	
B_w	= 1.0	
γ_g	= 0.70	
	$\begin{array}{c} p_{wh} \\ T_{wh} \\ D \\ \Delta h \\ T_{wh} \\ \dot{q}_L \\ WC \\ GLR \\ G_o \\ \gamma_w \\ B_w \\ \gamma_g \end{array}$	$p_{wh} = 300 T_{wh} = 100 D = 1.66 \Delta h = 8000 T_{wh} = 170 \dot{q}_L = 2000 WC = 30 GLR = 800 G_o = 40 \gamma_w = 1.05 B_w = 1.0 \gamma_g = 0.70 $

Kurs ENP100: Prosess og produksjon, Høst 2022

b) Use an Excel sheet to calculate the mixture densities used in Poettmann-Carpenter's model [2] at both ends of the well (wellhead and bottom-hole). For the bottom-hole, use an estimated pressure of 2500 psi a.

Note that:

- Air density, ρ_{air} in equation (4.40) is to be taken at standard conditions, i.e. it is a constant of $0.0765 \text{ lb}_m/\text{ft}^3$.
- Gas compressibility factor z, in equation (4.41) can be calculated in a variety of ways; for this exercise use $z_{wh} = 0.95$ for wellhead, and $z_{bh} = 0.80$ for bottom-hole.
- c) Find the bottom-hole pressure from Poettman-Carpenter's model, equation (4.36), for example using the Goal-Seek function in Excel (or a simply manual trial-and-error procedure). The result can be checked against the spreadsheet Poettmann-Carpenter-BHP.xsl.

Hint: Δp in equation (4.36) is the pressure difference between bottom-hole and wellhead when Δh is the total well depth; solve for p_{wh} (which is given);

$$p_{wh} = p_{wf} - \left(\bar{\rho} + \frac{\bar{k}}{\bar{\rho}}\right) \frac{\Delta h}{144}$$

then use Goal Seek or trial-and-error to set p_{wh} to 300 psi by adjusting the estimate for p_{wf} .

Note especially:

• The friction factor f_{2F} calculated from equation (4.44) should be multiplied by 4 before used with equation (4.37). This makes it in fact the *Darcy* friction factor, not the Fanning friction factor.

Referanser

- Guo, B., Liu, X., Tan, X.: Petroleum Production Engineering, 2nd Ed., Gulf Professional Publishing, 2017, ISBN 978-0-12-809374-0
- [2] Poettmann, F.G., Carpenter, P.G.: The Multiphase Flow of Gas, Oil, and Water Through Vertical Flow Strings with Application to the Design of Gas-lift Installations API, Drilling and Production practice, 1952